---
title: "AirBNB Dashboard"
output:
flexdashboard::flex_dashboard:
orientation: columns
vertical_layout: fill
source_code: embed
---
```{r setup, include=FALSE}
library(tidyverse)
library(p8105.datasets)
library(flexdashboard)
library(ggridges)
library(plotly)
```
```{r, include = FALSE}
ny_noaa
ny_noaa_df<-
ny_noaa %>%
janitor::clean_names() %>%
separate(date,into = c("year","month","day"),sep = '-',convert = TRUE) %>%
mutate(
month=month.abb[month],
prcp=prcp/10,
tmax=as.numeric(tmax)/10,
tmin=as.numeric(tmin)/10
) %>%
select(id,year,month,day,everything())
```
Column {data-width=650}
-----------------------------------------------------------------------------------
### Boxplot of tmin cross every year
```{r}
ny_noaa_df %>%
filter(month=="Jan") %>%
group_by(id,year,month) %>%
summarize(mean_tmin=mean(tmin)) %>%
plot_ly(x=~year,y=~mean_tmin,color = ~year,type = "box")
```
Column {data-width=350}
-----------------------------------------------------------------------------------
### tmax vs tmin for the full dataset
```{r}
tmax_tmin_plot<-
ny_noaa_df%>%
ggplot(aes(x=tmax,y=tmin))+
geom_hex()+
labs(
x="tmax (degree C)",
y="tmin (degree C)",
title = "tmax vs tmin for the full dataset",
caption="Data from ny_noaa"
)
ggplotly(tmax_tmin_plot)
```
### Scatterplot for station with observation times >8 for snowfall >150 mm
```{r}
scatterplot_snow<-
ny_noaa_df %>%
mutate(year=as.factor(year)) %>%
filter(snow>=150 & year %in% c("2008","2010")) %>%
group_by(id,year) %>%
summarize(n_obs=n()) %>%
filter(n_obs>8) %>%
mutate(id=fct_reorder(id,n_obs)) %>%
ggplot(aes(x=id,y=n_obs))+
geom_col(aes(fill=year))+
theme(axis.text.x = element_text(angle = 90, hjust = 0.5, vjust = 0.5))
ggplotly(scatterplot_snow)
```